Near Sameness is Somewhat the Same as Sameness

June 11th, 2018

Wouter Beek (w.g.j.beek@vu.nl), Joe Raad (joe.raad@agroparistech.fr), Jan Wielemaker, and Frank van Harmelen

Part I: Motivation

Linked Data requires owl:sameAs

Formal meaning

〈x, owl:sameAs, y〉 means that (∀P)(Px ↔ Py)

Linked Data

“Include links to other URIs, to discover more things.”
[4th Linked Data principle]

Linked data requires owl:sameAs

louvre:monaLisa
  dc:created "1503"^^xsd:gYear;
  dc:creator "Da Vinci".
louvre:monaLisa owl:sameAs sothebys:somePainting.
sothebys:somePainting
  sothebys:auctionDate "2018-06-07"^^xsd:date;
  sothebys:price "€1.000,-";
  sothebys:contact "mailto:bidding@sothebys.com"^^xsd:anyURI.
Without owl:sameAs we cannot link our data.

Similarity is not good enough

SKOS exactMatch indicates a high degree of confidence that two concepts can be used interchangeably across a wide range of information retrieval applications.
SKOS specification, 2009

The only thing worse than owl:sameAs is ‘clever’ replacements for owl:sameAs.

lexvo:nearlySameAs lexvo:somewhatSameAs owl:sameAs.
lexvo:nearlySameAs lexvo:nearlySameAs lexvo:somewhatSameAs?
owl:sameAs lexvo:somewhatSameAs bbc:sameAs?

Use cases

  • Findability through backlinks
  • Query Answering under OWL entailment
  • Ontology Alignment
  • Empirical Semantics

We need an enabler for empirical research into how owl:sameAs is actually being used.

The analytic approach: “people make mistakes” / “it's just noise” is not enough.

sameas.orgwww.sameas.cc
№ terms203M180M
№ statements345M559M
№ identity sets63M49M

www.sameAs.cc requirements

  • A performant and cost-effective solution for determining whether two things are (claimed to be) the same.
  • This solution must scale to the LOD Cloud.
  • This solution must be formally interpretable (no skos:exactMatch, rdfs:seeAlso).
  • It must be calculated incrementally.

Part II: Approach

Formal properties of Identity

Identity is the smallest equivalence relation, it is:

  • reflexive (x,x)
  • symmetric (x,y) → (y,x)
  • transitive (x,y) ∧ (y,z) → (x,z)

Example

Explicit identity relation (domain {:a,:b,:c,:d})

:a owl:sameAs :b.
:d owl:sameAs :b.

Corresponding implicit identity relation

:a owl:sameAs :a.
:a owl:sameAs :b.
:a owl:sameAs :d.
:b owl:sameAs :a.
:b owl:sameAs :b.
:b owl:sameAs :d.
:c owl:sameAs :c.
:d owl:sameAs :a.
:d owl:sameAs :b.
:d owl:sameAs :d.

Obtain the explicit identity relation









http://lod-a-lot.lod.labs.vu.nl

Fernández et al. 2017

Extract the explicit identity relation

prefix owl: <http://www.w3.org/2002/07/owl#>
construct {
  ?s owl:sameAs ?o
} where {
  {
    select distinct ?s ?o {
      ?s owl:sameAs ?o
      filter(?s < ?o)
    }
  }
}

Result set size: 558.9M

Create an HDT file in 4 hours (1 CPU core); 4.5GB + 2.2GB index

Compaction

For calculating the implicit identity relation we do not need the full explicit identity relation (558.9M):

2.8M
reflexive triples
225M
duplicate symmetric triples

Compaction reduces size by 42% (311M triples).

Calculate the implicit identity relation

  • RDF nodes : N
  • key : ID ↦ Ƥ(N)
  • val : N ↦ ID
  • Identity closure for x : key(val(x))

Add an explicit identity pair (x,y)

X and y are new
x ↦ id, y ↦ id, id ↦ {x,y}
Only x is new (only y is new)
x ↦ val(y), val(y) ↦ key(val(y)) ∪ {x}
x and y are old
val(x) ↦ key(val(x)) ∪ key(val(y)), ∀ y'∈key(val(y)) . y' ↦ val(x)

Run time: 5 hours (2 CPU cores); 9.3GB disk (RocksDB)

Part III: Analysis

Terms in the explicit identity relation

Explicit identity statements per term

Aggregation by namespace

2,618 namespaces, 10,791 edges, and 142 components.

Relatively few namespaces have internal links. (Indicator that datasets enforce UNA internally.)

Domain-specific identity hubs:

Bibliographic datasets
www.bibsonomy.org
Geographic datasets
geonames.org
Biochemistry datasets
bio2rdf.org
Online reviews
revyu.com

Terms in implicit identity relation

№ IRIs
3,543,226,266
Most popular IRI
rdf:type (639,478 documents, 3,321,354,308 triples)
Plateau between IRI 100 & 10K
European Environment Information and Observation Network (Eionet)
№ IRIs in 1 dataset
2,981,438,990 IRIs (84%)

№ Identity sets in implicit identity relation

Singleton identity sets
5,044,948,869
Non-singleton identity sets
48,999,184

Non-singleton identity sets

31,3.8,556 identity sets (63.96%) have cardinality 2.

The largest identity set has cardinality 177,794. It includes Albert Einstein, the countries of the world, and the empty string. Responsible for 31,610,706,436 (90%) of the implicit identity relation.

Kernel calculation

The size of a minimal explicit identity relation that denotes the same implicit identity relation.

Runtime
55.6 seconds (3 CPU cores)
Kernel size
130,673,158 triples
Percentage of the implicit identity relation
0.37%
Percentage of the explicit identity relation
23.4%

Part IV: Practical example

Explicit identity statements for ‘Barack Obama’

But are these really the same resource?

http://als.dbpedia.org/resource/Barack_Obama
http://am.dbpedia.org/resource/ባራክ_ኦባማ
http://data.nytimes.com/obama_barack_per
http://viaf.org/viaf/52010985
http://yago-knowledge.org/resource/Barack_Obama
http://rdf.freebase.com/ns/m.02mjmr
http://dbpedia.org/resource/Administration_of_Barack_Obama
http://dbpedia.org/resource/Barack_Obama_Cabinet
http://dbpedia.org/resource/Barack_Obama_presidency
http://yago-knowledge.org/resource/Presidency_of_Barack_Obama
http://rdf.freebase.com/ns/m.05b6w1g

‘Barack Obama’ after community detection

Communities correspond to roles:

  • person
  • senator
  • president
  • government

Future work

Thank you for your attention!